Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

نویسندگان

  • Jun Zhu
  • Xinghui Zhong
  • Chi-Wang Shu
  • Jianxian Qiu
چکیده

In this paper we generalize a new type of limiters based on the weighted essentially nonoscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [31] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the entire polynomials of the DG solutions from the troubled cell and its immediate neighboring cells, and then apply the classical WENO procedure to form a convex combination of these polynomials based on smoothness indicators and nonlinear weights, with suitable adjustments to guarantee conservation. The main advantage of this new limiter is its simplicity in implementation, especially for the unstructured meshes considered in this paper, as only information from immediate neighbors is needed and the usage of complicated geometric information of the meshes is largely avoided. Numerical results for both scalar equations and Euler systems of compressible gas dynamics are provided to illustrate the good performance of this procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes

In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes, with the goal of obtaining a r...

متن کامل

Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes

In this paper we generalize a new type of compact Hermite weighted essentially nonoscillatory (HWENO) limiter for the Runge-Kutta discontinuous Galerkin (RKDG) methods, which were recently developed in [34] for structured meshes, to two dimensional unstructured triangular meshes. The main idea of this limiter is to reconstruct the new polynomial using the entire polynomials of the DG solution f...

متن کامل

Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter

Abstract In this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the RungeKutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [32]. Both limiters use information ...

متن کامل

Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case

In this paper, a class of fifth-order weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving one-dimensional nonlinear hyperbolic conservation law systems is presented. The construction of HWENO schemes is based on a finite volume formulation, Hermite interpolation, and nonlinearly stable Runge–Kutta methods. The idea o...

متن کامل

Runge-Kutta Central Discontinuous Galerkin Methods for the Special Relativistic Hydrodynamics

Abstract. This paper develops Runge-Kutta PK-based central discontinuous Galerkin (CDG) methods with WENO limiter to the oneand two-dimensional special relativistic hydrodynamical (RHD) equations, K = 1,2,3. Different from the non-central DG methods, the Runge-Kutta CDG methods have to find two approximate solutions defined on mutually dual meshes. For each mesh, the CDG approximate solutions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 248  شماره 

صفحات  -

تاریخ انتشار 2013